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p11 (S100A10) is a member of the S100 prote in family and

forms a heterotetrameric complex with annexin 2. p11 has also

been found to interact with a diverse set of proteins that

includes several ion channels and the serotonin 5-HT1B

receptor. Several factors such as dexamethasone, growth

factors, nitric oxide and antidepressant therapies regulate the

expression of p11. Furthermore, studies using mutant mouse

models, RNA interference and antisense constructs have

implicated p11 in several biological processes; in particular,

there is evidence that p11 is involved in the pathophysiology

underlying nociception and depression-like states.
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Introduction: p11 is a member of the S100
protein family
P11 (also named S100A10, 42C, calpactin I light chain and

annexin II light chain) is a member of the S100 family of

proteins [1,2]. S100 proteins are small acidic proteins

(10–12 kDa) and constitute the largest subfamily of

EF-hand proteins, with at least 25 members [1–3,4�,5].

The chromosomal arrangement of S100 proteins is unu-

sual, as the genes encoding 21 family members (S100A1–

S100A18, trichohylin, filaggrin and repetin) are clustered

at chromosomal locus 1q21, whereas other S100 proteins

are found at chromosomal loci 4p16 (S100P), 5q14

(S100Z), 21q22 (S100B) and Xp22 (S100G) [2,4�]. S100

proteins exist as symmetrical homo- and hetero-dimers,

with each monomer containing two EF-hand motifs. The

N-terminal EF-hand comprises helix I, calcium-binding

site I and helix II, separated by a linker from the

C-terminal EF-hand that includes helix III, calcium-

binding site II and helix IV. The dimer interface consists
www.sciencedirect.com
of helices I and IV of each monomer arranged in an X-type

four-helix bundle [6,7�]. The S100 proteins have 25–65%

identity at the amino acid level, with the sequences of

the linker region and the C-terminal extension being the

most variable among the proteins [1]. A unique feature of

p11 is that it contains mutations in both of the calcium-

binding sites, making it calcium insensitive [8]. Like

other S100 proteins, the majority of p11 is found

intracellularly in the cytosol or at the inner surface of

the plasma membrane [1,9]. However, p11 is also present

on the extracellular surface of many cells where it binds

tissue plasminogen activator (tPA) via its C-terminal

lysines [10,11]. Carboxypeptidases cleave the carboxyl-

terminal lysines of S100A10, resulting in a loss of

extracellular binding to tPA.

Here, we review protein–protein interactions involving

p11, the regulation of p11 expression, and the current

knowledge of the functions of p11 with an emphasis on its

role in the nervous system.

Multiple proteins interact with p11
More than 20 years ago, it was shown that p11 could be co-

purified as a heterotetramer with annexin 2 [12�]. It has

since been found that the translocation of annexin A2 to

the cell surface is p11 dependent [13]. Moreover, the

heterotetrameric p11/annexin 2 complex organizes lipid

microdomains [14], bundles F-actin filaments [15] and

has been shown to be involved in membrane–cytoskele-

ton linkage, membrane trafficking and endocytosis [9].

The p11/annexin 2 complex was the first three-dimen-

sional structure of an S100 complex to be determined [6].

Helices III and IV of p11 interact with the N terminus of

the annexin 2 molecule [16]. The locations of the inter-

actions between annexin 2 and p11 are similar to those

identified for annexin 2 and S100A11. In addition to

annexin 2, p11 has recently been shown to interact with

numerous additional proteins (Table 1). These interac-

tions are all calcium independent [7�]. Currently, knowl-

edge of the domains through which p11 interacts with

proteins other than annexin 2 is still limited. In the cases

where the domains have been examined, it has been

found that the C-terminal portion of p11 is involved.

However, whereas the domain of interaction between

p11 and annexin 2 involves both helices III and IV, the

interaction site with NaV1.8 channels resides within helix

III [17] and the interactions with tPA [11] and other S100

proteins involve solely helix IV [18]. For most of these

protein–protein interactions, it is not known whether p11

is the only S100 protein member that can act as an
Current Opinion in Pharmacology 2007, 7:27–32
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Table 1

Proteins that have been shown to interact with p11 and the functional role of p11 in these interactions.

Interactor Biological function of p11 Reference

Annexin 2 Regulation of endosomal functions [12�]

5-HT1B receptor Localization of 5-HT1B receptors at the cell surface [25��]

NaV1.8 sodium channel Increase of NaV1.8 channels at the plasma membrane [21]

TASK-1 potassium channel Regulation of TASK-1 channels at the plasma membrane [22,45]

ASIC-1 channels Increase of ASIC channels at the plasma membrane [24]

TRPV5/TRPV6 channels Increase of TRPV5/TRPV6 channels at the plasma membrane [23]

NS3 Mediation of virus release [46]

Cytosolic phospholipase A2 Reduced arachidonic acid release [26]

BAD Inhibition of pro-apoptotic effect [47]

HBV Pol Inhibition of DNA polymerase activity [48]

AHNAK Increase of AHNAK in the cell membrane [49]

Cathepsin B Binding of cathepsin B at the cell surface [28]

PCTAIRE-1 Stimulation of kinase activity [27]

Plasminogen activator Stimulation of plasminogen activity [10]

Transglutaminase P11 is a transglutaminase substrate [19]

S100A7 [18]

S100A8 [18]

5-HT, 5-hydroxytryptamine (serotonin); BAD, Bcl2-antagonist of cell death.
‘interactor’. For example, both p11 and S100A11 show

interactions with annexin 2 and transglutaminase [19].

Recently, a binding motif of the p11/annexin 2 complex

in the AHNAK (meaning ‘giant’ in Hebrew) protein has

been described [20].

Some functional consequences of the interactions

between p11 and its partners have been reported. Accu-

mulating evidence indicates that p11 plays an important

role in the trafficking of transmembrane proteins. It has

been demonstrated that p11 regulates the level of Nav1.8,

acid-sensing ion channel (ASIC)-1, TWIK-related acid-

sensitive K+ channel (TASK)-1, transient receptor poten-

tial vanilloid (TRPV)5/6 channels and 5-HT1B receptors

at the cell surface [21–24,25��]. p11 has also been shown

to regulate the enzymatic activity of various proteins

including phospholipase A2, PCTAIRE-1, tPA and cathe-

psin B [11,26–28].
Table 2

Factors that have been shown to regulate p11 expression in biologica

Factor Biolog

Dexamethasone BEAS

Transforming growth factor-a RGM

Epidermal growth factor BEAS

Nitric oxide donors BEAS

Interferon-g BEAS

Vitamin D Mous

Retinoic acid BEAS

Nerve growth factor PC12

Imipramine Mous

Tranylcypromine Mous

Electroconvulsive treatment Rat fr

Sciatic nerve lesion Rat

Experimental autoimmune encephalitis Rat c

Current Opinion in Pharmacology 2007, 7:27–32
Regulation of p11 levels by various factors
There is accumulating evidence that p11 is an inducible

protein, and several transcription factors, including acti-

vator protein-1, SP-1 and nuclear factor-kB, have been

identified upstream of the p11 gene [29]. In addition,

multiple factors have been shown to regulate p11 levels

(Table 2). In studies using epithelial cell lines expressing

native p11 (BEAS cells [a human bronchial epithelial cell

line], HeLa cells or RGM-1 cells [rat gastric mucosal cell

line known to be normal gastric epithelial cells]), it has

been found that dexamethasone, transforming growth

factor-a, nitric oxide donors, interferon-g and epidermal

growth factor all induce p11 expression [30–34]. These

data demonstrate that diverse types of factors can regulate

p11 levels, and that multiple physiological stimuli can

regulate its levels. Studies using the pheocytochroma cell

line PC12 have shown that nerve growth factor (NGF)

can also regulate p11 levels [35]. Likewise, using primary
l systems.

ical system Reference

and HeLa cells [34]

-1 cells [30]

and HeLa cells [31]

and HeLa cells [33]

cells [32]

e kidney [23]

cells [50]

cells, rat dorsal root ganglion [21,35]

e frontal cortex [25��]

e frontal cortex [25��]

ontal cortex [25��]

[37]

erebellum [38]
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cultured dorsal root ganglia neurons, it has been found

that NGF induces p11 is these cells [21]. Interestingly,

increased p11 levels cause proliferation and differentia-

tion of PC12 cell morphology [36]. Several antidepressant

treatments, including imipramine (a tricyclic antidepres-

sant), tranylcypromine (a monoamine oxidase inhibitor)

and electroconvulsive treatment, have been shown to

upregulate p11 levels in the frontal cortex of mice and

rats [25��]. Upregulation of p11 also occurs in response to

sciatic nerve lesions [37], as well as in Purkinje cells in

experimental autoimmune encephalitis, a rat model of

multiple sclerosis [38].

Involvement of p11 in neuronal function
p11 is widely distributed in the body and has been detected

in the brain, heart, gastrointestinal tract, kidney, liver, lung,

spleen, testes, epidermis, aorta and thymus [4�,39]. Within

the brain, p11 is expressed in several regions, including the

cerebral cortex, hippocampus, hypothalamus and raphe

nuclei [25��]; however, a detailed study of its distribution

remains to be performed. By virtue of its interactions with

5-HT1B receptors and NaV1.8/ASIC-1 channels, the invol-

vement of p11 in the regulation of depression-like states

[25��] and nociception [21,24] has been investigated. As

mentioned above, p11 expression is increased in the rodent

brain following several types of antidepressant therapy

(Figure 1). Interestingly, the levels of p11 are decreased

in a mouse model of depression and in brain tissue from

unipolar depressed patients. Overexpression of p11 in the

forebrain leads to increased motor activity, thigmotaxis and

reduced immobility in the tail suspension test — a test

commonly used to evaluate antidepressant drug efficacy.

Conversely, p11 knockout mice have significantly reduced

responsiveness to stimulation of 5-HT1B receptors in bio-

chemical, electrophysiological and behavioural tests, as
Figure 1

Schematic drawings of the hypothetical relationship between p11, serotonin

receptors to the plasma membrane, thereby regulating the efficacy of serot

correlates with a reduced number of 5-HT1B receptors at the cell surface, de

symptomatology. Right-hand side: conversely, increased p11 expression (e.g

receptors at the cell membrane, increasing serotonergic neurotransmission
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well as to the behavioral action of imipramine in the tail

suspension test. These experiments have provided strong

evidence to suggest that the interaction between p11 and

5-HT1B receptors plays a role in the pathophysiology of

depression-like states. In this context, it is interesting to

note that studies in cell lines have shown that p11 levels are

stimulated by dexamethasone and neurotrophic factors.

It is commonly believed that stressful life events can

precipitate depression [40], and hippocampal atrophy has

been found in depressed individuals and in patients

suffering from Cushing‘’s disease, a condition involving

hypercortisolemia [40]. Animal studies have shown that

stress-induced dendritic atrophy can be counteracted by

some antidepressant treatments [40]. Our data indicate

that decreased levels of p11 correlate with the suscept-

ibility to depression. It is therefore paradoxical that

dexamethasone stimulates the levels of p11. However,

the relationships between cortisol, stress, depression and

p11 are likely to be complex and require detailed inves-

tigation. Neurotrophic factors are potent regulators of

plasticity and survival of adult neurons and glia. The

neurotrophic hypothesis of depression states that a defi-

ciency in neurotrophic support contributes to hippocam-

pal pathology in depression, and that reversal of this

deficiency by antidepressants can contribute to the treat-

ment of depression [41]. However, recent studies have

shown that decreased levels of neurotrophins in some

brain regions correlate with antidepressant actions; as a

result, there is an ongoing revision of the neurotrophin

hypothesis of depression.

Studies in cell lines have shown that overexpression of

p11 leads to an enhanced number of 5-HT1B receptors at

the cell surface (Figure 1) [25��]. A reduced number of
5-HT1B receptors and depression-like states. p11 recruits 5-HT1B

onergic neurotransmission. Left-hand side: decreased p11 expression

creasing serotonergic neurotransmission and leading to depression-like

. induced by antidepressant therapies) upregulates the number of 5-HT1B

and producing antidepressant effects.

Current Opinion in Pharmacology 2007, 7:27–32
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binding sites for 5-HT1B receptor ligands has been

demonstrated in p11 knockout mice. These effects could

be mediated by multiple mechanisms, such as altered

recruitment of the receptors to the cell membrane or

disturbed endosomal recycling and/or degradation of the

receptor. There is indeed evidence that p11, together

with annexin 2, is involved in intracellular positioning of

early recycling endosomes [9,42]. It is also noteworthy

that antidepressants not only increase the brain content of

p11 but also stimulate the production of S100B [43]. As

p11 appears to be expressed in both neurons and glia,

whereas S100B is more abundant in glia, S100 proteins

might be important in determining the region and cell

specificity of antidepressant mechanisms.

P11 levels have been shown to increase in response to

sciatic nerve lesions, indicating that p11 is involved in

nociceptive processes [37]. At least two channels inter-

acting with p11, NaV1.8 and ASIC-1 are involved in

nociception [21,24]. In both instances, p11 increases

the expression of these channels at the cell membrane

in cell lines. Studies investigating the functional impor-

tance of the interaction between p11 and these channels

have been performed in dorsal root ganglia, a neuronal

population that expresses high levels of both types of

channels [21,24]. Using an antisense construct against

p11, loss of a tetrodotoxin-resistent NaV1.8 current den-

sity was found [21]. An involvement of p11 in peripheral

pain pathways was recently found in mice lacking p11 in

dorsal root ganglia (see also Update).

P11 can also regulate neuronal functions by virtue of its

interaction with tPA. Most cases of stroke are caused by

sudden blood vessel occlusion, and the primary treatment

for this condition is systemic administration of tPA, which

stimulates plasmin-dependent thrombolysis. As men-

tioned above, the carboxyl-terminal lysines of p11 bind

tPA, resulting in the stimulation of tPA-dependent plas-

min production [11]. Interestingly, plasmin can also bind

to p11, and the formation of the p11/tPA/plasmin complex

stimulates highly localized plasmin activity at the cell

surface. These data indicate that p11 plays a role in

regulating the severity of stroke and the treatment

response towards tPA. Moreover, as tPA/plasmin is also

known to cleave pro-brain-derived neurotrophic factor

(BDNF) to BDNF [44], it is possible that the p11/tPA/

plasmin complex might regulate BDNF synthesis that, in

turn, could modulate, for example, emotions and mood

state.

Conclusions
There is accumulating evidence that p11 interacts with a

diverse set of target proteins and regulates various bio-

logical functions in different cellular compartments.

Additional work is required to determine the extent to

which p11 can interact with multiple target proteins

simultaneously. As the expression of p11 is inducible,
Current Opinion in Pharmacology 2007, 7:27–32
it is likely that the cell specificity of these interactions

differs between normal and disease states. p11 has been

shown to be implicated in depression-like states and

nociception, and future work should clarify whether

p11 is implicated in additional diseases states. The avail-

ability of p11 knockout mice [25��] will facilitate efforts to

understand the role of p11 under physiological and patho-

physiological conditions. The development of pharma-

cological agents, such as peptides or small molecules,

which can interfere with the interactions between p11

and target proteins, should allow novel approaches to the

treatment of disease states including depression and

anxiety.

Update
A recent study [51�] evaluated the role of p11 in peripheral

pain pathways. Using mice lacking p11 specifically in

dorsal root ganglia, it was found that noxious coding in

wide-dynamic-range neurons in the dorsal horn was mark-

edly compromised. Pain behavior was attenuated in certain

models of acute and neuropathic pain. However, given the

fact that pro-inflammatory NGF and interferon-g upregu-

late p11 levels, it was surprising that no deficits in inflam-

matory pain were observed. Nonetheless, this study

confirms a modulatory role for p11 in pain pathways.
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